Publicações
Foto: Connor McManus
ArtigoEvaluation of the EC-EARTH3-VEG climate model in reproducing the evolution of maximum and minimum air temperatures in Brazil
ResumoAccording to the Sixth Report of the Intergovernmental Panel on Climate Change (IPCC), published in 2023, between 2011 and 2020, global surface temperatures increased by 1.1°C compared to the period 1850-1900. This upward trend in temperature is related to changes in the observed climate patterns, which will potentially lead to a greater incidence of extreme weather events and ecosystem changes, as well as impacting the health of human populations. In Brazil, this scenario could also result in biodiversity losses, reduced agricultural productivity and changes in the availability of water resources, with consequences for the country's economy and energy security. Considering this context, this study aims to evaluate the ability of the EC-Earth3-Veg model, part of the Coupled Model Intercomparison Project Phase 6 (CMIP6), to reproduce the evolution of maximum and minimum air temperatures at 2 meters in Brazil during the historical period, at intervals between 1961 and 2014, comparing it with ERA5 reanalysis data. The CMIP6 data was interpolated to the ERA5 grid to carry out the desired analysis. Based on this, it was observed that EC-Earth3-Veg was able to reproduce the historical climatology for Brazil but showed climatological differences when compared to ERA5 in the four periods observed. It is common among the periods analyzed that the further north of the country is warmer, with maximum temperatures in summer and autumn. In winter and spring, the same happens in the eastern part of the North, the Center-West, and the northern part of the Southeast of Brazil. In the fall, the Northeast and Midwest show cooler highs. The period in which the model's results were closest to ERA5 was from 1961 to 1990, especially for minimum temperatures in summer and winter. Even so, in the fall and spring of this period, the model showed warming in relation to the minimums in the South, and, in all the quarterly cut-outs, it showed cooling in the minimums near the Northeast. In general, certain regional and seasonal patterns were observed in the results, which may indicate a limitation of the model in terms of horizontal resolution in considering a more characteristic atmosphere for Brazil. In the southern region, for example, the maximum and minimum temperatures in the model showed warming. This may indicate that the model is limited in its horizontal resolution and does not consider an atmosphere that is more characteristic of Brazil. Therefore, to improve the model's performance in simulating the climate in Brazil, it is necessary to correct the bias and use EC-Earth3-Veg in conjunction with other models to reduce systematic errors. This study aims to replicate this work for other models.
ArtigoAnalysis of correlations between the South Atlantic Convergence Zone and Climate Indices Derived from the Pacific and Atlantic Oceans for Evaluating Teleconnections
ResumoThe South Atlantic Convergence Zone (SACZ) is one of the most important phenomena that influences the precipitation patterns in Brazil's Southeast and Midwest regions during the spring and summer. These regions play a major role for the country's economy, particularly in terms of agriculture and industrial production. It is estimated that the SACZ is responsible for approximately 25% of the total volume of rain in Southeast Brazil from October to April. The conditional probability of a natural disaster occurring when the SACZ is present in the region is around 24%, while, in the case of a disaster occurring in the Southeast, the conditional probability of observing the presence of SACZ is 48%. This work provides an initial understanding of how different teleconnection patterns can influence the configuration, position, and intensity of the SACZ. The goal is to investigate potential correlations between the SACZ index, the El Niño Southern Oscillation (ENSO) indexes, the Atlantic Sea surface temperatures (SST) between Central America and Africa, the Brazil-Malvinas Confluence (BMC) and the Antarctic Oscillation (AAO). For the SACZ indexes, the monthly data was derived by summing the values for each month. This process utilized data spanning from 1980 to 2010 to establish the monthly climatology. The monthly indexes and anomalies were compared with the monthly climatology values from January 1999 to December 2022. For daily indexes of BMC, Niño1+2, Niño 3, Niño 3.4, Niño 4, Atl_N, Atl_NL, Atl_C and Atl_CL sea surface temperature (SST) anomalies were referenced against a climatology spanning from 1971 to 2000. In these cases, monthly data was obtained through the average of the daily indexes. Finally, AAO indexes were already obtained monthly. In this case, the time series were normalized using the standard deviation of the monthly index, based on the 1979-2000 period. Three Pearson correlations were calculated monthly for the period from 1999 to 2022. These correlations were evaluated for the average from October to March, October to December, and from January to March. The preliminary results showed that colder anomalies of the Equatorial Pacific (La Niña), the North Equatorial Atlantic, and the CBM, in conjunction with a positive phase of the AAO and warmer waters of the Central Equatorial Atlantic, are associated with the occurrence and configuration of the SACZ (and vice versa). This signal is most pronounced in the period from October to December and during the October to March timeframe, while it weakens in the months from January to March.
ArtigoDeveloping a Multivariate System for Predicting and Mitigating the Health Impacts of Heatwaves
ResumoThe main purpose of this study is to develop a heatwave impact-based forecasting system using a new multivariate index, that also encompasses a mitigation action plan with hydration-related measures. Since 1990, heatwaves have become more frequent and intense in various regions worldwide, particularly in Europe and Asia. The principal health effects of heatwaves include organs' strain and damage, complications of cardiovascular and kidney diseases, as well as adverse reproductive effects. These detrimental impacts are widespread and commonly affect individuals aged 65 and above. Many nations have established metrics to assess the prevalence of this occurrence within their borders. These metrics typically use specific threshold values and/or ranges of the near-surface (2 m) air temperature, usually denoted by the extreme values from past records. To the best of our knowledge, only some of these metrics take into account the persistence of the phenomenon and few consider the relative humidity. It is noteworthy that in most of these metrics the temperature thresholds lead to a linear escalation of the conditions posing a risk to the population, which may lead to a misperception of the actual level of risk involved. To thoroughly evaluate the health hazards associated with heatwaves, it is essential to consider the climate variability and change at regional and local scales, as well as the diverse responses of living organisms to extreme (and long-lasting) temperature and humidity conditions. Factors such as individuals' sex, ancestry, age, pre-existing medical conditions, and geographical location should be considered too. The first step of this study consisted of the characterization of the monthly Cumulative Distribution Function of the daily maximum near-surface air temperature (TX) in summer, in recent climate. We used the ERA5-Land reanalysis dataset and performed the analysis for each grid point, considering 1960-1990 as baseline period. Subsequently, in order to compute the index, the temperature values exceeding the 95th percentile (TX95p) were subjected to a normalized scaling function whose values grow exponentially with the magnitude of the temperature and also depend on the ambient relative humidity. The resulting index values range from 0 to 1, only being greater than zero when the temperature exceeds TX95p. To calibrate the index, we considered the hours of the day during which the index deviates from zero and its correlation with hospitalization and mortality data, mainly related to cardiovascular diseases such as thrombosis. The preliminary work concerned the Region of Murcia, in Spain. The index was validated in the period 2000-2022. Results show the sensitivity of the index, which displays its largest values in the summer of 2022, coinciding with the high number of heat-related deaths observed that year in Spain. Future research will be focused on index calibration and validation in other regions which are also subjected to extreme heat conditions.
ArtigoEvaluating Standard Precipitation Index (SPI) using MIROC6 historicclimate simulations and ERA 5 reanalysis data as a tool to map theimpacts of climate change in rainfall regime in Brazil
ResumoRising global average temperatures, as a consequence of climate change, have worsened the occurrences of extreme weather events, causing disruptions in rainfall patterns around the world. In Brazil, such effects are already observed with the increase of heat waves, floods, droughts, and wildfires. The correlation between disruptions in precipitation patterns and fires is complex, nevertheless, the intensity, frequency, and duration of drought events have significant impacts on fuel flammability and fire behavior. Drought monitoring is particularly relevant in Brazil, where the vast majority of forest fires have an anthropogenic ignition and prolonged dry periods favor such fires to spread out of control. The Standardized Precipitation Index (SPI) is one of the most important tools used to evaluate precipitation variability, offering simple yet robust statistical information on the distribution, duration, and frequency of rainfalls and, consequently, droughts. The SPI uses precipitation as input data to standardize the deviation of cumulated rainfall from the mean of historical precipitation, detecting water deficit (negative values) or water surplus (positive values) for a given location. In doing so, this index allows direct spatial comparability between arid and humid regions. This is an advantageous characteristic when drought analysis is applied to a country with different regional rainfall regimes, such as Brazil. The applicability of SPI as a source of drought prediction was investigated by observing its performance with historical climate simulations of the 6th phase of the Model for Interdisciplinary Research on Climate (MIROC6) and the fifth generation ECMWF atmospheric reanalysis of the global climate, ERA5. The direct comparison of the SPI data, employing the climatology extending from 1980-2014 in Brazil, derived both from the climate simulation model and the reanalysis data - which combines observations and models - has provided valuable insights. Preliminary results show an overall consistency in the calculated indexes from both sources, which are in line with seasonal regional rainfall patterns in Brazil. On average, the SPI indexes recognize water deficits for the North-east, north of the South-east and central regions of Brazil. During the months of winter, both indexes detect droughts in these regions, with ERA-5 SPI index registering severe droughts in central Brazil. These results suggest that the SPI index calculated using the reanalysis data seems to register droughts with greater severity and longer duration, identifying more precisely periods with little to no rainfall, whilst the SPI derived from the MIROC6 simulation data, although able to acceptably identify and delimitate droughts, records less severity for the same period. These findings are important to recognize the MIROC6-derived SPI index as a valuable tool in drought prediction. However, they also highlight the necessity of acknowledging the limitations of the model regarding the severity of droughts. The understanding and prediction of precipitation anomalies is fundamental to coping with the impacts of climate change on water resources, agriculture, and biodiversity, guiding mitigation and adaptation strategies in Brazil.
ArtigoStandard Precipitation Index (SPI) applied to Socioeconomic Pathway Scenarios (SSPs) as a tool to map the distribution of droughts and potential fire hazard areas in Brazil in the face of climate change
ResumoWildfires represent a significant threat to natural ecosystems, biodiversity, and communities worldwide. Disruption in precipitation regimes and temperature rise caused by climate change are key factors that worsen and increase wildfire incidents. In Brazil, recent studies have shown the majority of fire incidents are initiated by anthropogenic action, as a consequence of agricultural expansion, deforestation and land disputes. Although the human use of fire as an illegal tool is difficult to predict, the occurrence of dry meteorological conditions, prone to uncontrolled spreading of fires, can be studied employing climate modeling, providing a useful instrument to aid authorities in preventive measures and improved responses to mitigate these impacts, contributing to more efficient and sustainable management of fire-related risks. The Standardized Precipitation Index (SPI) is a useful tool for assessing precipitation variability, allowing the analysis of drought period duration, distribution, and severity. The SPI uses precipitation data to standardize the deviation of accumulated precipitation from the historical average in each location. This process yields negative or positive values, which correspond to water deficits or surpluses, respectively. Aiming to identify areas in Brazil where predicted disruption in rainfall patterns, in face of climate change, may create drier conditions and increase vulnerability to fire incidents, we evaluated precipitation trends, comparing historical simulations from the 6th phase of the Model for Interdisciplinary Research on Climate (MIROC6) and future scenarios data from the Intergovernmental Panel on Climate Change (IPCC). We focused our analysis on 3 climate change scenarios, referred to as Shared Socioeconomic Pathways: SSP2-4.5, SSP3-7.0, and SSP5-8.5. These scenarios encompass anticipated global socioeconomic transformations up to the year 2100, based on different projections of greenhouse gas emissions, and offer an assessment of the climate outlook for current society. Thus, we calculated SPI indexes for the time spans 1960-1990 and 2020-2050, examining the variations in rainfall patterns across the country during both periods. Using SPI derived from MIROC6 climatological data, it is possible to identify past patterns that are the basis for understanding future changes' impact. The results from SPI climatological data are consistent with the climate and seasonal rainfall patterns historically observed in Brazil, where Northeast and Central Brazil exhibit greater water deficits. The scenarios employed suggested that the historical patterns of droughts would be worsened in severity in central Brazil and the areas of influence would be extrapolated, creating drier meteorological conditions to the Southern and East portions of Amazonia and the Southeast of Brazil. The SPI indexes calculated to the projected scenarios reinforce the understanding of the impacts of climate change, suggesting the pathway SSP55-8.5, with higher emission of CO2, implicates in increased occurrences of extreme events, particularly prolonged and severe droughts in regions that suffer from wildfires. Identifying regions with an increased likelihood of prolonged drought events in the projected future is a valuable instrument for examining fire hazard and mitigation plans within a country such as Brazil, which encompasses diverse climates and biomes across its territory with resources of significant conservation value.
ArtigoEvaluation of the mechanisms acting on the Atlantic Meridional Overturning Circulation in CESM2 for the 1pctCO2 experiment
ResumoA Circulação Meridional do Atlântico (AMOC) é um componente crucial do sistema climático da Terra devido ao seu papel fundamental na distribuição de calor, transporte de carbono e oxigênio e no clima. Outros componentes climáticos, como a atmosfera e o gelo marinho, influenciam a AMOC. Avaliar os mecanismos físicos dessas interações é fundamental para aumentar o conhecimento sobre o funcionamento da AMOC. Neste estudo, os autores usaram resultados do Community Earth System Model versão 2 e dados observacionais para investigar mudanças na AMOC e os processos físicos associados. Dois experimentos DECK foram avaliados: piControl e 1pctCO2, com um aumento anual de 1% de CO2 atmosférico. A análise revelou uma diminuição significativa na AMOC, associada a mudanças na profundidade da camada mista e na flutuabilidade em altas latitudes do Atlântico Norte, resultando no desligamento da convecção profunda e potencialmente afetando a formação de Água Profunda do Atlântico Norte e Água de Fundo da Antártida. Um aspecto vital observado neste estudo é a associação entre o aumento do escoamento superficial e a redução da evaporação da água, dando origem a um processo de feedback positivo. Consequentemente, as taxas de propagação de água doce se intensificaram durante esse período, o que pode levar a uma interrupção acelerada do AMOC além das projeções dos modelos existentes.
ArtigoDevelopment of a New Generalizable, Multivariate, and Physical-Body-Response-Based Extreme Heatwave Index
AbstractThe primary goal of this study is to introduce the initial phase of developing an impact-based forecasting system for extreme heatwaves, utilizing a novel multivariate index which, at this early stage, already employs a combination of a statistical approach and physical principles related to human body water loss. This system also incorporates a mitigation plan with hydration-focused measures. Since 1990, heatwaves have become increasingly frequent and intense across many regions worldwide, particularly in Europe and Asia. The main health impacts of heatwaves include organ strain and damage, exacerbation of cardiovascular and kidney diseases, and adverse reproductive effects. These consequences are most pronounced in individuals aged 65 and older. Many national meteorological services have established metrics to assess the frequency and severity of heatwaves within their borders. These metrics typically rely on specific threshold values or ranges of near-surface (2 m) air temperature, often derived from historical extreme temperature records. However, to our knowledge, only a few of these metrics consider the persistence of heatwave events, and even fewer account for relative humidity. In response, this study aims to develop a globally applicable normalized index that can be used across various temporal scales and regions. This index incorporates the potential health risks associated with relative humidity, accounts for the duration of extreme heatwave events, and is exponentially sensitive to exposure to extreme heat conditions above critical thresholds of temperature. This novel index could be more suitable/adapted to guide national meteorological services when emitting warnings during extreme heatwave events about the health risks on the population. The index was computed under two scenarios: first, in forecasting heatwave episodes over a specific temporal horizon using the WRF model; second, in evaluating the relationship between the index, mortality data, and maximum temperature anomalies during the 2003 summer heatwave in Spain. Moreover, the study assessed the annual trend of increasing extreme heatwaves in Spain using ERA5 data on a climatic scale. The results show that this index has considerable potential as a decision-support and health risk assessment tool. It demonstrates greater sensitivity to extreme risk episodes compared to linear evaluations of extreme temperatures. Furthermore, its formulation aligns with the physical mechanisms of water loss in the human body, while also factoring in the effects of relative humidity.
ArtigoCreation and Assessment of an Index for Atmospheric Blockings in Brazil's Central Region
AbstractThe management of electricity in Brazil is conducted in an integrated manner to ensure security and economy. The system generation capacity is primarily composed of hydroelectric plants distributed in different regions of the country. However, in recent years, the precipitation regime in the country and, consequently, water availability have shown significant changes in climatological patterns, putting water storage in a critical situation, particularly in the northeast region. Therefore, we analyzed whether the occurrence of atmospheric blocks is becoming more frequent and affects the precipitation regime patterns. The main goal is to develop an index to assess atmospheric block occurrence through vorticity at 850 hPa and 500 hPa and geopotential anomaly variables and to investigate other mechanisms that are related to the increase in blockage occurrence rate. Based on these data extracted from the ERA5 reanalysis, it was possible to establish an index and climatology of atmospheric blocks over South America. The index was created for seven regions of Brazil, and climatology was used to obtain geopotential anomalies for the period 1980-2010. By analyzing the index, it was possible to see how atmospheric blockades in central Brazil were more frequent and persistent from 2010 to 2023, with approximately 150% more atmospheric blocking observed in this period relative to the period from 1960-1980.